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Abstract. One of the hallmarks of the Bayesian approach to modeling is the posterior
probability, which summarizes all uncertainties regarding the analysis. Using a Markov
Chain Monte Carlo (MCMC) technique, it is possible to generate a sequence of objects
that represent random samples drawn from the posterior distribution. We demonstrate
this technique for a reconstruction of a two-dimensional object from two orthogonal noisy
projections. The reconstructed object is modeled in terms of a deformable geometrically-
defined boundary with a constant interior density yielding a nonlinear reconstruction
problem. We show how an MCMC sequence can be used to estimate uncertainties in the
location of the edge of the reconstructed object.

Key words: Uncertainty estimation, Bayesian estimation, Markov Chain Monte Carlo,

deformable geometric model, tomographic reconstruction

1. Introduction

A number of years ago one of the authors (KMH) introduced the use of geometrical
models in tomographic reconstruction within a Bayesian framework [1, 2]. Such
models, also called deformable models or snakes, can greatly improve one’s ability
to reconstruct an object from projections taken from a very small number of
angles, particularly when the object is known to have constant density. Indeed, it
was shown that is possible to obtain a good reconstruction of a simulated lumen
(cross section of a blood vessel) from just two orthogonal views that might be
obtained from two digitally-subtracted angiograms, for example. Those familiar
with tomographic reconstruction problems initially find that result surprising. The
astounding success of that demonstration begs the question, how much can one
rely on a reconstruction based on such limited data? In this paper we directly
address this critical question.

The general method we employ here to estimate uncertainty in the recon-
structed object is to generate a sequence of random samples of the posterior prob-
ability distribution using the Markov Chain Monte Carlo (MCMC) technique. By
fully mimicking the posterior, this sequence of samples can be used to assess the
posterior in various ways. We demonstrate posterior characterization for recon-
structions of an object from projections in two directions under the assumption
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of a known, constant interior density. In the analysis, the boundary of the recon-
structed objects are subject to a prior that promotes smoothness. We show how
the MCMC sequence can be used to estimate uncertainties in the location of an
edge of the reconstructed object.

Before proceeding, we mention an alternative method of probing the posterior
to estimate the uncertainty in specific aspects of an estimated model, which we
introduced at the MaxEnt Workshop in 1993 [3, 4]. In that approach, which we
often refer to as the “hard truth” concept, one observes the displacement of the
most probable model as one applies a specified “force” to the model. We have
shown that the resulting displacement in the model parameters is quantitatively
related to the covariance matrix times the force vector when the posterior can be
approximated by a multivariate Gaussian distribution.

2. Bayesian analysis

Bayesian analysis provides the ultimate means of analysis of uncertainties in the
interpretation of data in terms of models. Every aspect of modeling is assigned
a probability that indicates our degree of certainty in its value. At the lowest
level of analysis, the estimation of the values of parameters for a specified model,
a probability density function (PDF) is associated with each continuous parame-
ter. Loosely speaking, the range of a probability distribution indicates the possible
range of its associated parameter. The benefit of Bayesian analysis over traditional
methods of uncertainty, or error, analysis is that it permits the use of arbitrary
probability distributions, not just Gaussian distributions, and of arbitrary mea-
sures of uncertainty, not just rms deviation (or variance). Bayesian analysis also
brings to light the use of prior knowledge, which all kinds of analysis incorpo-
rate, but do not advertise. Furthermore, it extends analysis to higher levels of
interpretation, e.g., the choice of hyperparameters that control the strength of the
priors used and the selection of appropriate models [5]. We refer the reader to any
of the several excellent books that have recently appeared [6, 7, 8], which treat
Bayesian analysis from a practical point of view. Another useful source of back-
ground information is the collection of proceedings from the series of workshops
on Maximum Entropy and Bayesian Methods, which have been published under
that title, mostly by Kluwer Academic Press.

In Bayesian analysis, the state of knowledge about the parameters x associated
with a model that describes the physical object being studied is summarized by
the posterior, which is the probability density function p(x|d) of the parameters
given the observed data d. Bayes law gives the posterior as

p(x|d) ∝ p(d|x) p(x) . (1)

The probability p(d|x), called the likelihood, comes from a comparison of the ac-
tual data to the data predicted on the basis of the model of the object. Under
the assumption that the data are degraded by uncorrelated and additive Gaus-
sian noise, it is appropriate to use the exponential of −1

2
χ2 for the likelihood. As

usual, χ2 is the mean squared difference between the actual and the predicted
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measurements divided by the expected variance in the measurements. The pre-
dicted data are generated using a model for how the measurements are related
to the object, which we call the measurement model. The prior p(x) expresses
what is known about the object, exclusive of the present measurements, and may
represent knowledge acquired from previous measurements, specific information
regarding the object itself, or simply general knowledge about the parameters,
e.g., that they are nonnegative.

2.1. Deformable models

We will model the objects to be reconstructed in terms of their boundary and
their interior density, which is taken to be constant. The boundary is approximated
in discrete terms as a finely-divided polygon. The length of the edges of the
polygon can be made short enough to adequately describe a curve at any degree
of resolution desired. The use of a polygon actually imposes a desirable constraint
on the result of an analysis, namely that the object’s boundary is closed.

A smoothness constraint on the boundary is achieved by placing a prior on
the curvature of the boundary. The minus-log-prior is taken to be proportional to∫

κ2(s) ds, where κ(s) is the curvature of the curve as a function of the position
along the curve s. This prior serves to keep the curve smooth because large
curvature is penalized. This form for a prior has a physical analog in the formula
that describes the potential energy created by bending a stiff rod. We note that
since the integral has the dimensions of reciprocal length, it depends on the scale
of the curve. To achieve a prior that is related to the shape of the curve, not its
size, as suggested in Ref. [9], we suggest that the integral should be multiplied by
the total arclength of the boundary to form a dimensionless quantity.

For our discrete polygon model, we replace the integral by a sum of contri-
butions associated with each vertex in combination with half of each neighboring
edge of the polygon. To approximate the minus-log-prior for the continuous curve,
we use the expression

α
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where the sums are over the vertices of the polygon, π − θj is the internal angle
at the jth vertex, L−

j and L+
j are the half-lengths of the previous and next edges

of the polygon, and wj is the weight for the jth vertex. The hyperparameter α
(called a hyperparameter rather than a parameter because it controls a general
aspect of the model) determines the strength of the prior relative to the likelihood.
Further details can be found in [10].

In addition to the smoothness constraint, we have found it useful to control
the lengths of the sides of the polygon to avoid any side from either getting too
small or much bigger than the rest. This control is accomplished in this study by
adding to the above minus-log-prior the following expression

β
∑

j

(L+
j − L+)2 , (3)
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where L+ = 1
n

∑
jL

+
j is the average half-length of the n sides of the polygon. The

choice for the hyperparameter β is somewhat arbitrary. It should not effect the
outcome of the modeling effort when chosen over a rather large range of values
because this prior only provides control of the polygon representation. The value
β = 100 seems to work well in the present circumstance.

The present study is carried out using the Bayes Inference Engine (BIE). We
developed the BIE to allow one to easily develop complex models for both the
objects under study and the measurement process. Various aspects of the BIE
are described elsewhere [4, 11, 12, 13, 14, 15]. The MCMC technique is a prefect
match to the computational approach to Bayesian inference that is the foundation
of the BIE.

3. Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) technique provides a means to sample
an arbitrary probability density function. A valuable asset of MCMC is that there
are generally no restrictions placed on the PDF and no functional form for the
PDF is required. In its minimalist form, MCMC only requires that one be able to
calculate ϕ = −log (posterior), although sometimes the gradient of ϕ is used.

A Markov chain is a sequence of states in which the probability of each state
depends only on the previous state. In MCMC the objective is to generate a
sequence of sets of parameters that mimic a PDF, let’s call it q(x), where x is a
vector of parameters in the relevant parameter space. More precisely it is desired
that the MCMC sequence be in statistical equilibrium with the target PDF q(x),
which is achieved when the MCMC sequence is marked by the condition of detailed
balance:

q(x)T (x → x′) = q(x′)T (x′ → x) , (4)

where T (x → x′) is the transition probability for stepping from x to x′. This
equation essentially requires that in a very long sequence the number of steps
from x to x′ is identical to the number from x′ to x. For more information about
MCMC, the reader is referred to the recent paper by Besag, et al. [16] or the
excellent book by Gilks, et al. [17], which summarizes MCMC.

The MCMC technique [16] makes it feasible to perform some of the difficult
technical steps required by probability theory (normalization of PDFs, marginal-
ization, computation of expectation integrals, model selection) in a computer.
There is growing optimism among Bayesian advocates that faster computers,
together improved computational techniques, will promote the routine use of
Bayesian analysis to address the complex models that are demanded in many
application areas.

3.1. Metropolis algorithm

One of the simplest algorithms used in MCMC calculations is due to Metropo-
lis et al. [18]. This algorithm ensures detailed balance (4) for each step in the
sequence. One starts at an arbitrary point in the vector space to be sampled, x0.
The general recursion at any point in the sequence xk is as follows:
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(1) Pick a new trial sample x∗ = xk + ∆x,
where ∆x is randomly chosen from a symmetric probability distribution

(2) Calculate the ratio r = q(x∗)/q(xk)
(3) Accept the trial sample, i.e. set xk+1 = x∗,

if r ≥ 1,
or with probability r, if r < 1,

otherwise, repeat last point, i.e. set xk+1 = xk.
Obviously, this algorithm is very simple. The remarkable thing is that it works!

However, the computational efficiency of the Metropolis algorithm may be poor
when simple trial distributions are used.

3.2. Comparison with simulation approach

An alternative method that is often used to characterize and test a recon-
struction algorithm is based on simulation. The algorithm is used to reconstruct
from several sets of simulated data in which new realizations of the noise in the
measurements are used in each case. This approach provides insight into the prop-
agation of noise in a reconstruction algorithm. However, it does not fully explore
the uncertainty of the reconstruction.

Consider a reconstruction problem in which the measurements are linearly
related to the parameters to be estimated; the vector of measurements can be
written as the product of a measurement matrix times the parameter vector. In
ill-determined reconstruction problems, the measurement matrix possesses a null
space, which means that there exist combinations of parameters that do not con-
tribute to the measurements. One way to look at the benefit that one wishes
to gain from the use of prior information is that it should fill in the null-space
components of the parameter space with something meaningful [19, 20].

It is easy to see that the simulation approach outlined above does not sample
the uncertainties in the null space. However, the MCMC approach does so be-
cause it randomly samples the parameter space. As such, it can also incorporate
uncertainties that arise from the priors.

4. Example

4.1. Problem statement

We demonstrate the versatility of the Metropolis technique with an example of
tomographic reconstruction from just two views. This problem is known generally
to be an extraordinarily difficult inverse problem. Its solution is made feasible by
employing the prior information that the object being reconstructed has constant
density and consists of a fairly simple shape with smooth boundaries. Figure 1
displays the object concocted for this example. It is fashioned to be representative
of a lumen, the cross section of an artery, possessing a sizable occlusion. Inciden-
tally, for better visualization this image and all the images shown here are blown
up to display the central 80×80-pixel region instead of their full width of 128×128
pixels. To give the scale of the images, the width and height of the object are
roughly 64 pixels.
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Figure 1: The original object used in the example.

Figure 2: The vertical projection of the original object, with noise added, comprises
one of two views used to reconstruct the object.

Two orthogonal views of the object shown in Fig. 1 are generated, one consist-
ing of the vertical projection and the other of the horizontal. Each projection has
128 samples over a distance that is about twice the width of object. Gaussian noise
is added to these projections with an rms deviation of 5% of the peak projection
amplitude. The data for the vertical projection are shown in Fig. 2.

4.2. MAP reconstruction

For reconstruction the object is modeled in terms of a finely-divided polygon
filled with a constant density, which we assume is known beforehand. The polygon
has 50 sides (and vertices) to fairly approximate a continuous curve. The param-
eters in the model consist of the x and y values of the 50 vertices. The prior on
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Figure 3: The MAP reconstruction shown as a grayscale image with the boundary
of the original object superimposed.

the curvature of the boundary has already been stated. However, the strength of
the prior, i.e. α in Eq. (2), must be specified. Ideally, the hyperparameter α that
is consistent with the data would be calculated utilizing the next higher level of
Bayesian inference [5]. As we are not yet equipped to do that in the BIE, we tried
several values for α and selected what seemed to be an appropriate value α = 1.0.

The MAP reconstruction is obtained by using the BIE to find the minimum
in the minus-log posterior with respect to the 100 variables in the polygon model.
The BIE accomplishes this in an efficient manner through the use of the Adjoint
Differentiation In Code Technique (ADICT) [21] to calculate the gradient of ϕ.
The reconstructed object compares quite well with the original, as shown in Fig. 3.
The maximum discrepancy in the position of the two boundaries is about 3.3
pixels, which occurs in the lower lobe. Over the vast majority of the boundary,
the reconstruction lies at most one pixel away from the original.

4.3. MCMC results

The MCMC algorithm described above was used to generate samples from the
posterior of this reconstruction problem. In all, 150,000 trial steps were calculated
for a total computation time of about 16 hours on a DECstation 250 with a DEC
alpha processor running at 266 MHz. For each MCMC trial step, the increments
in the x and y positions of each of the vertices were independently chosen from
a Gaussian distribution with an rms step size of 0.06 pixels. 42049 steps were
accepted, for an acceptance rate of about 28%. Three widely-separated samples
from the full MCMC sequence are shown in Fig. 4. While it is not possible to
deduce any quantitative behavior from these three samples, they provide some
indication of the amount of variation in the shapes that occupy the posterior. The
amount of waviness observed in the boundary is moderate, as can be observed
in Fig. 4. The excess amount of waviness compared to the original object might
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Figure 4: Three representative samples from the posterior shown as curves on top
of the grayscale images of the MAP reconstruction (left) and the original object
(right).

convince one that α = 1 is a safe choice.
During the generation of the MCMC sequence, the configuration of the bound-

ary is saved to disc at every fiftieth step in the sequence. After the full sequence is
generated, the saved configurations can be played back as a “video loop”. Visual
observation of the abridged sequence indicates that there is a strong correlation
in the configurations over a few frames, i.e. more than a hundred steps in the
sequence. This correlation might be expected because of the very small step that
each vertex takes in each iteration of the Metropolis algorithm. We also observe
from the video loop that it takes several hundred steps in the sequence for the
boundary to move from far to one side of its mean position to far to the other, a
distance of a few pixels. Roughly speaking, one might expect that it would take
on the order of [2/(0.06

√
2)]2 ≈ 500 random steps of rms radial distance 0.06

√
2

pixels to move a total distance of two pixels.
A quantitative estimate of posterior characteristics is obtained by averaging

over the MCMC sequence. Such an average of the grayscale image of the object
is shown in Fig. 5. Of course, it does not make sense to average the positions of
the vertices, because there is nothing to keep the polygon from slipping around
the boundary of the object, which has no bearing on the actual object shape.
The average MCMC image in Fig. 5 represents the posterior mean image. The
amount of blur in the edge of the object indicates the variability in the position of
that edge allowed by the posterior, i.e. the uncertainty in edge location. From the
measured distance between the 10% and 90% points of the blurred edge of this
posterior average, we deduce that the rms uncertainty in edge location varies from
about 0.5 pixels to about 1.0 pixels at various positions around the periphery. The
smallest rms deviations occur at the limiting edges on the top, bottom, and right
sides of the object. These positions are effectively measured by the tangential rays
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Figure 5: The average of the grayscale images for all the MCMC sample from the
posterior with the contour for the MAP reconstruction shown as a dotted line.

of the two projections. The horizontal position of the leftmost edge is not quite
as well determined.

One of the largest rms deviations is found to be along the top arc, just left of
the middle. This large uncertainty is caused by the ability of the top boundary
of the object to easily move left and right and still match the data fairly well.
This movement is feasible because it can be matched by small distortions in other
parts of the boundary, an effect that can be observed in the video loop. One must
be aware that any conclusion drawn from a finite MCMC sequence is subject to
uncertainty caused by the statistics of the finite sampling of the posterior. One
of the important issues regarding MCMC is how to estimate the accuracy of an
uncertainty estimation.

Figure 5 also shows that the MAP reconstruction (the model that maximizes
the posterior) appears to be consistent with the contour at half the amplitude
of the posterior mean image. This result suggests that the posterior probability
distribution is symmetric about its maximum. From the shape of the edge profile
of the posterior average, we tentatively conclude that the posterior may be a mul-
tivariate Gaussian distribution, despite the nonlinear relation between the vertex
parameters and the measurements.

An interesting and important feature of the MCMC technique is that any fea-
ture that one wishes to characterize, e.g., the average edge position and its uncer-
tainty in the above example, is not conditional on particular values of other param-
eters in the model. In terms of probability theory, MCMC provides marginalized
results, which means that the dependence on the uncertainties in “nuisance vari-
ables” is integrated out. In the context of the above discussion, the uncertainty in
the edge position deduced for any particular location of the boundary is indepen-
dent of the uncertainties in edge positions for the rest of the boundary.
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5. Discussion

We have presented the results of a study of MCMC applied to a tomographic
reconstruction problem. Although there are an abundance of issues that remain
to be addressed, these preliminary results demonstrate the enormous promise of
applying MCMC to Bayesian inference. This technique can obviously be used to
estimate uncertainties in reconstructed (estimated) models. Moreover, it can be
used to estimate the uncertainties in quantities derived from reconstructed models,
e.g., in the field of medical imaging, ejection fraction of the heart, or the activity
in a specified region of a reconstructed emission image.

On the negative side, many important issues must be addressed before MCMC
can be truly useful, including (a) How does one measure the accuracy of an esti-
mate obtained from MCMC? (b) How does one assure adequate coverage of the
posterior bubble? (c) How can a minimum number of samples be chosen to repre-
sent the posterior in an uncorrelated way? Our simple example leads us to believe
the efficiency of the MCMC can be very poor, particularly when the Metropolis
algorithm is used with an isotropic trial step distribution. Minimizing the CPU
time required to achieve a specified accuracy is of critical importance. One of the
approaches we wish to explore soon is to make use of the gradient of the minus-log-
posterior, a capability built into the BIE, to better select the MCMC trial steps.
The importance of the above topics is reflected by the fact that most of them are
currently under active investigation throughout the statistics community. We look
forward to innovative solutions coming out of this worldwide research effort.

One of the limitations of the present study is that α in (2) has been fixed.
Therefore, the uncertainty in α is not included in the analysis presented above.
A more thorough approach would be to consider α as a parameter that should
be determined from the data. Then, by including α in the list of variables to be
explored by the MCMC process, the uncertainty in α would be included in the
overall uncertainty analysis.
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